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CLOSED GEODESICS ON MANIFOLDS WITH
INFINITE ABELIAN FUNDAMENTAL GROUP

VICTOR BANGERT & NANCY HINGSTON

While many results are known about closed geodesics on compact manifolds
with finite fundamental group, there are few for manifolds with 7; infinite ([2],
[6]), with the exception of manifolds admitting metrics of nonpositive curva-
ture. We prove that for every compact Riemannian manifold M with funda-
mental group 7; = Z the number of geometrically distinct closed geodesics of
length < / grows at least like the prime numbers. In particular, there are
infinitely many. Geodesics are called geometrically distinct if their images on
M are different.

Manifolds with #; = Z can be found, e.g., by taking a bundle over S' with
simply connected fiber or by attaching a handle 7 X $"7! to a simply
connected manifold of dimension n > 3. There are no examples in dimension
2.

Every nontrivial free homotopy class of closed curves on a compact mani-
fold contains a curve of minimal length which is a closed geodesic. If m; = Z
there are infinitely many free homotopy classes but the corresponding minimal
length geodesics can be geometrically indistinct. If (M) is abelian and
Rank 7, ® Q > 2, then the fundamental group is enough to ensure the ex-
istence of infinitely many closed geodesics: if 5, ¢ € #; are independent and of
infinite order, minimal length curves in the classes st™ will be geometrically
distinct. While those in the classes ™ may not be distinct, the following
generalization of our theorem is true:

Suppose m,(M) is abelian and t € m has infinite order. Then the number of
geometrically distinct closed geodesics of length < [ in the classes t™, m > 1,
grows at least like the prime numbers.

The case where 7, is infinite abelian but 7, # Z is easier and is already
known to some experts. We will include a proof for this case at the end of the

paper.
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A covering space argument shows that the above conclusion also holds if
has an infinite abelian subgroup of finite index. However, all our arguments
seem to break down when #; is more nonabelian.

A suggestion by W, Ballmann helped to simplify the proof for = (M) # Z.
P. Freyd and M. Levine assisted algebraically. The first named author thanks
the University of Pennsylvania for its hospitality.

Theorem. Let M be a compact Riemannian manifold of dimension > 2 with
m (M) =Z. If n(l) is the number of geometrically distinct closed geodesics of
length < I, then

liminfn(l)lig—l > 0.
[—= oo !

Proof. © and A will denote the loop space and the free loop space of M.
There are several ways to make A accessible to Lusternik-Schnirelmann
theory; we can take e.g. H'-curves [8] or piecewise geodesics [9]. The mth
iterate of y € A will be denoted by y™: y™(8) = y(m#). Let ¢ be a generator
of (M) and A, the t”-component of A. Since M is not homotopy equivalent
to a circle, 7,( M) # 0 for some (minimal) # > 1.

Lemmas 1 and 2 below give a k € N such that for all m € N there exist
nontrivial classes a,, € 7,_1(A 4, ¥,,) Which are in the image of 7,_,(%, v,,)-
Here we choose as base points closed geodesics v,, € A, with length

k,, = inf{length(y)|y € A, }.

Note that «,, < mk,. A representative v,, for a,, is constructed from a repre-
sentative f1 S” = M of a (fixed) class a in 7,(M) as follows (for the precise
definition see Lemma 2): The curves in the image of v,, are the product of v,,
with curves which are the image under f of curves which “wrap around” S”.

Tm
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Let
7,, = inf sup{length(y)|y €Imf}.
fea"l

By Lusternik-Schnirelmann theory there exists a closed geodesic 6,, € A,
with length 7,,. By the construction of «,, we have

(+) Kp ST, S K, + L

for a constant L independent of m.

If k,, = T, there exist infinitely many geometrically distinct closed geodesics
of length «,. Otherwise, «,, could be represented in an orbit of the natural
S'-action on A which would imply either a,, =0 or n =2 and e,a,, * 0
where e: A — M 1s the evaluation map at the basepoint. But e, a,, = 0 since
@, is in the image of 7, _; (£, v,,)-

Hence we assume 7,, > «,,. We may also assume that there exists ¢ > 0 such
that A, contains no closed geodesics with length in (x;, k; + ¢]. Let p be a
prime number with pe > L. The multiplicity of y € A, y # const, is the largest
integer j so that y = ¥/ for some ¥ € A. We finish the proof by showing that A
and §, cannot both have multiplicity > k. Otherwise v, = ¥7 and §, = 7 for
some ¥, 0 E_Ak. Since T, > K, and K, < pKy, We would have length(¥) = &,
and length(8) > k; + & Hence

7,> Kk, +pe>k,+ L,

contradicting (*). Thus if p(n) is the nth prime, at least n/k of the geodesics
among the v, and §, with p < p(n) are geometrically distinct.

Lemma 1. Let t be a generator of m(M) = ZL. For some k € N there exists
a€7,(M),n>2sothata & (1 — t*)m,.

It follows that a & (1 — t™)m, = (1 — XYL + t*+ - + X" Dyq for
almeN. ‘

Proof. First note that =, is a finitely generated module over the group ring
Zlm] if m(M)=0 for 1 <j<n. To see this triang}llate M so that the
simplices are evenly covered by the universal covering M — M. The pullback
gives a triangulation of M whose complex is finitely generated over Z[,].
Since Z[w,] is Noetherian, H,(M) is a finitely generated Z[,]-module. Note
that the Hurewicz isomorphism 7,(M) — H, (M) commutes with the natural
a;-actions. Thus 7,(M) = 7, (M) is a finitely generated Z[,]-module.

Now let % € Zf7,] = Z[t,¢7'] be the annihilator of 7, and let M be a
maximal ideal containing %. Then Zj=, ]/ is a finite field: If M N Z = (0)
then (1) #+ QMM = (f) since Q[¢] is a PID. If we choose f in Z[¢] and primitive
then I C (f), a contradiction since (f) < (f, p)# (1) if p € Z is prime to
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the coefficients of f. Hence !t N Z = (p) and Z[m]/M is finite. For a less
elementary proof using only the assumption that «; is abelian and finitely
generated see [5, p. 353]. Since ¢ is a unit in Z[7,], 1 — ¢t € M for some
ke N.

On the other hand (1 — )7, = =, implies that 1 — ¢* is a unit in Z[m /Y,
see [1, Corollary 2.5, p. 21]. Hence 1 — ¢* is a unit in Z[m,]/M, contradicting
1 — ¢t* € 9. This proves Lemma 1.

Lemma 2. Suppose t“ <€ (M) and f: (S",x) = (M, ) satisfy [f]€&
(1 — t*)m,. Let v: (S*, %) > (M, «) represent t*, and let o represent a generator
of m,_((RS", »). Then the composition v, (S"71, %) > (A M, v) given by

Qf «
by (5771,6) 5 (QS7, %) > (@M, %) 5 (M, v) > (AM, Y)
represents a nontrivial class in w,_;(AM, v).

The curves 8 in the image of v, have

length(8) < length(y) + max{length(8’)|8’ € Im(Qf - 0)]}.

Proof. See [10, especially pp. 474-476], as a general reference. Lemma 2
essentially follows from [7, Lemma 1.5], except that in our case 4 = t*:
M — M has no fixed point and we need to take the basepoint y € AM.
Lemma 2 can be proved directly as follows: Suppose

h: (S"_1 x I, {*} X I) - (A,y)

is a null homotopy of v, i.e. hy = v, and h: "1 — {y}. Letc: A X T — A
lift the natural S'-action and let e: A — M be the evaluation map. The
composition

' hxid -
H:S" P X IX 2SS AXISASM
gives a homotopy between

Hgn10y»; and Hign-15 10y U s™ Ux(1} X7 U ST Ix(1) -

The former represents the class [y« f] = t“[f], the latter that of (1 — ¢%)[g]
where g = H\gn-1,yx0y- (Note that all these restrictions of H factor through
S")

y«f| H |ecy
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Thus [f]= (1 — t¥)¢t %[ g], contradicting our hypothesis on f and ¢*. This
proves Lemma 2.

We add a proof of the more general statement mentioned in the introduc-
tion. Actually the preceding proof carries over literally unless M is a K(m, 1)
(so that M is covered by a homotopy torus). However the following proof
works whenever (M) is infinite abelian and 7, # Z: We choose ¢ € 7; of
infinite order and s € m; so that s and ¢ are independent. We denote by A, the
t"-component of A. Our statement follows from the arguments given in the
proof of the theorem if we can find homotopy classes «,,, € m(A,,) such that:

(@) ex(a,) = s,

(b) 7,, = inf,, sup{length(8)|6 € Imv} satisfies 7, < mk; + L, where L
is a constant independent of m and x; = inf{length(8)|6 € A,}.

In the proof of the theorem, (a) ensures that a,, cannot be represented in a
neighborhood of a critical orbit. Note that the proof requires only (b) rather
than the stronger property (*).

The existence of «; € m(A,) with (a) follows from the fact that s and ¢
commute: if f and g represent ¢ and s, a homotopy between f - g and g - f gives
a circle of curves in A, whose basepoints trace out g.

4

Choose v: S* — A, representing a; with k; = length(v(0)). We let a,, be the
class of v,: S — A,, where v,(0) = (v(8))". To obtain (b) apply the
homotopy defined in [4, Theorem 1} (for a figure see [3, p. 87]) to v™. This
yields v, € a,, and L € R so that

sup{ length(8)|6 € Imu,, } < mx; + L.
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